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(ABSTRACT)

A method is presented for calculating the shape sensitivity of a wing aeroelastic response |
with respect to changes in geometric shape. Yates’ modified strip method is used in
conjunction with Giles’ equivalent plate analysis to predict the flutter speed, frequency, '
and reduced frequency of the wing. Three methods are used to calculate the sensitivity
of the eigenvalue. The first method is purely a finite difference calculation of the
eigenvalue derivative directly from the solution of the flutter problem corresponding to “
the two different values of the shape parameters. The second method uses an analytic

expression for the eigenvalue sensitivities of a general complex matrix, where the deriv-

L i ASERRSW-, m. L

atives of the aerodynamic, mass, and stiffness matrices are computed using a finit> dif-

ference approximation. The third method also uses an analytic expression for the

eigenvalue sensitivities but the aerodynamic matrix is computed analytically. All three

e i e

methods are found to be in good agreement with each other. The sensitivities of the

gt

cigenvalues were used to predict flutter speed, frequency , and reduced frequency. These

approximations were found to be in good agreement with those obtained using a com-

plete reanalysis. However, it is recommended that higher order terms be used in the ‘i
calculations in order to assure greater accuracy. }
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1.0 Introduction.

1.1 Introduction and Backaround

Flutter, an aeroelasuc instability, is a sclf-sustaining oscillation that involves the coupl-
ing of inertial, elastic, and aerodynamic forces. Tail flutter was the earliest documented
case of dynamic aeroelastic instabiiy. It was discovered on the twin-engined Handley
Page 0/400 Bomber at the beginning of Worid War [ that the fuselage and tail had two
principal modes of vibration. In the first mode, the elevators oscillated about their hinges
130 degrees out of phase, because the elevators were not attached by a torque tube. In
the second mude, the fuselage osciilated in torsion. The coupling between these two

modes resulted in a self-sustained oscillation (.

Modem aircrafts are subjected to numerous types of flutter phenomena. Cl. ssical flutser
1s associated with potential flow and involves coupling of two or more degrees of free-
dom. Nonclassical flutter is concerned with oscillations due to boundary layer effects,

such as separeted flow and reattaching Jows. Nonclassical flutter is more difficult to
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analyze from a theoretical standpoint. Only classical flutter will be analyzed in this

presentation.

Flutter analysis capablities have been available for well over four decades. Loring [2]
developed a general approach to the flutter problem in 1941. Yates [3] developed a
modified strip analysis to analyze flutter characteristics for finite-span swept and un-
swept wings at subsonic and supersonic speeds in 1958. This method is still used today
to calculate the lift and moment forces. For example, Landsberger and Dugundji [4] used
these expressions, with a modilication for camber effects given by Spieloerg [3], to study
the flutter and divergence of a composite plate. The present day computers allow still
more complex aerodynamic programs to be developed and used. To name a few, the
unsteady vortex-lattice method developed by Strganac and Mook (6], the double lattice

method developed by Waldman [7], and the MCAERO code developed by Hawk and

Bristow (8].

The dynamics of any physical system is important from a designer’s view point. The
onset of flutter in a modern aircraft will involve large oscillatory distortions of the

sti.ctural components. Therefore, it would be advantageous to the designer to have a

tool which can be used to predict the chaages in flutter with the changes in basic shape

parameters.

Sensitivity analysis was first recognized as a useful tool for assessing the effects of
changing parameters in mathmatical models of control sysiems. The gradient based
mathematical programming method used in optimal control and structural optimization
furthered the development of sensitivity derivatives, because sensitivity derivatives are
used in search directions to find optimum solution {9,10,11,12]. Inefficient optimization

programs lead to further interest in efficient calculation of sensitivity derivatives. As a

Introduction.
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result, sensitivity analysis has become a versatile design tool, rather than just an instru-

ment of optimization programs [13].

Shape sensitivity analysis of any physical system under acroelastic loads can be impor-
tant from different points of view: 1) to understand and predict the system’s resporse

and 2) to optimize the response of the system for a set of physical constraints. In order
to predict or optimize the response the sensitivity derivatives must be calculated. This
can be done by a finite difference calculation or analytical calculation of the sensitivity
derivatives. Analytical sensitivity analysis has found increased interest in engineering
design. The anaiytical derivatives eliminate the uncertainty in the choice of step size,

which if too large can lead to truncation errors and if teo small can lead to jll-

conditiorning.

Adelman and Haftka [13] have shown that structural sensitivity analysis has been avail-
able for over two decades. Structural sensitivity analysis has been sufficient in the past
because sizing variables such as plate thickness and cross-sectional areas effect the mass
and stiffness properties of the airframe but, not its basic geometry. Therefore, aero-

dynamic sensitivity analysis capability has been limited in development until recently.

For example, Rudisill and Bhatia (14] developed expressions for the analytical deriva-
tives of the eigenvalues, reduced frequency and flutter speed with respect to structural
parameters for use in minimizing the total mass. However, this method is limited because

the structural parameters are sizing variables such as cross-sectional areas, plate thick-

ness and diameters of spars.

Pedersen and Seyranian [15), examined the change in flutter load as a function of change

in stiffness, mass, boundary conditions or load distribution. They showed how sensitivity

Introduction.
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analysis can be performed without any new eigenvalue analysis. The solution to the main o
and an adjoint problem provide all the necessary information for evaluating sensitivitics. :

Their paper mainly focuses on column and beam critical load distributions.

Hawk and Bristow [8] developed aerodynamic sensitivity analysis capabilities in subcrit-
ical compressible flow. They first analyzed a baseline configuration, and then calculated
a matrix ~ontaining the partial derivatives of the potenual at each control point with
respect to each known geometric parameter by applying a first-order expansion to the
baseline configuration. The matrix of partial derivatives is used in each iteration cycle
to analyze the perturbed geometry. However, this analysis only handles chordwise per-
turbation distributions, such as changes in cember, thickness and twist. A new approach, v
which is still under development, has been proposed by Yates [16] that considers general

geometric variations, including planform, for subsonic, sonic and supersonic unsteady,

nonplanar lifting-surface theory.

Barthelemy and Bergen [17] explored the analytical shape sensitivty derivatives of a wing
static aeroelastic response. They found that the second derivatives of the wing's )
aeroelastic characteristics, such as section lift, angle of attack , rolling moment, induced 5

drag, and divergence dynamic pressure, for subsonic subcritical flow, with respect to

geometric parameters are small enough to be well approximated by sensitivity based t

-

linear approximations. These approximations are valid within a range that are useful to

LR e

the designer in the initial design phase.

This work is an extension of previous work preformed by Barthelemy and Bergen [17],
and details the theoretical and computational derivation of a method to obtain the sen-

sitivity of a wing flutter response to changes in its geometry. Specifically, the objective

C e o mgeteyhoe TGt

1s to determine the derivatives of flutter speed and frequency with respect to wing area,
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aspect ratio, taper ratio, and sweep angle. Chapter 2 gives a brief description of the

structural formulation which was onginally formulated at the NASA Langley Reascarch

Center by Giles [18). The program is based upon a Raleigh-Ritz formulation in which
the displacement functions are made up of polynomiai expressions. The aerodynamic
formulation is presented in Chapter 3. The expression for lift and moment are derived
from potential flow theory and have been medified 1o account for finite span. [n
Chapter 4, the formulation is validated using examples found in other works. Once there

is sufficient confidence in the flutter speed prediction capablities, it is shown that the

sensitivity analysis will predict the flutter speed for changes in the structural parameters.
Three different approaches are used to obtain the sensitivity of the flutter speed, fre-

quency, and reduced frequency to various shape parameters. These include:

(1) a purely numerical approach using the finite difference method,

(i1) a semi-analytical method that uses an analytic exp.ession given
by Murthy and Haftka [19], for calculating the sensitivity of the
eigenvalues of a generalized eigenvalue problem and a
finite difference approximation of the derivatives of the
aerodynamic, mass and stiffness matrices with respect to the
geometric pararaeters; and

(iii) an analytic approach that uses the analytic expression for
calculating the sensitivity of the eigenvalues and

an analytically derived expression for the sensitivity of the

aerodynamic matrix witi respect to geometric parameters.

Chapter 6 gives conclusions and suggestions for future work.

Introduction.




2.0 Structural Model

2.1 Introduction

This chapter presents the structural formulation which was originally programmed by
Giles {18]. The program is based upon a Ritz solution technique using the the energy
functionals for a laminated plate which includes the bending and stretching of the refer-
ence surface. This program is capable of analyzing unsymmetric wing box sections aris-
ing from airfoil camber, laminate sequences, or different thicknesses in upper and lower
cover skins. Thermal loadings can be represented as temperature distributions over the

planform of the cover skins.

The acrodynamic formulation restricts the chordwise length to remain straight during
oscillations, therefore only high aspect ratio wings will be analyzed in this presentation.
Only bending and torsional deformations are considered in this analysis procedure. In
the theory of plates, the KirchhofT assumption is made that lines normal to the reference

plane remain straight and normal after deformations.

Structural Model 6
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The planform geometry of the wing is represented by a trapezoidal segment. To repre-
sent cranked wing boxes, multiple trapezoidal segments can be defined. Each segment
has a separatc local coordinate system. The local coordinates are nondimensional such
that ¢ refers to a fraction of the chord and # a fraction of the span as shown in Figure

1.

Figure 2 illustrates a possible geometry of the wing box and coordinate system. The
mid-camber surface is measured from a reference plane. The distance, Z,, is represented

as a polynomual in the global coordinates x and y.

Z.(xy) =200+ z10x + zzoxz + 201y F et Zx Y [2.1.1]

The depth of the wing box, H(x,y) is measured from the mudchord surface and the
thickness t(x,v) of each laminate is also defined by polynomial expressions x and y. The

expressions for the depth and thickness are:

H(xy) = Hog + Hgx + Hygx* + Hop + ... + Hypex ™" [2.1.2]

Hxy) = fog + 110X + (2% + lo1y + oo+ lnex " (2.1.3] §

In the present formulation, the depth of the wing bor and thickness of the skins is as-

-

sumed to be constant throughout. The coefficients of equations (2.1.2) and (2.1.3) are:

Hyg = .100  meters tog = 002 meters

H, =00  t,=00 m=1..,5 n=1..5

The wing box used for this presentation is shown in Figure 3. The box section chordline i

is straight, therefore Z, ( x, ) is zero for this presentation.

Structural Model 7 !
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2.2 Displacement Function

The Rayleigh-Ritz formulation assumes a deflection shape for the wing structure. This
deflection shape is a linear combination of n assummed displacement functions. The as-
sumed displacement functions are specitied as products of polynomial x-direction and

y-direction global coordinates. The deflection equation can be written as:

N M '
W)= D Com (2[5 [22.1]
n=0

*max Ymax
m=2

where N is restricted to five terms and M is restricted to six terms in order to prevent
numerical difficulties in the manipulation of the matrices. W(x ,y) is the transverse de-

flection of the reference line , and C.m the set of unknown coefTicients.

The deflection equation can also be written as:

np
Wx,y)= Zv,- (x,y) G [2.2.2]

=]

where y, ( x, y) is the nondimensional displacement function and np is N times M. All
the assumed displacement functions satisfy the geometric boundary conditions for a
cantilever plate. The constants x,,, and Ymax are defined in magnitude as the root chord
and span respectively. The displacement functions are nondimensional quantities in or-

der to prevent numerica: difficulties in manipulation of the matrices.

Structural Model 11
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2.3 Energy Expressions

The strain energy U for a symmetric anisotropic laminate is given as:

1 2 :
U= T‘UA (DU W ax + 2013 W o W + D25,

+ 3D\ W (W e + D3 W W, + ADgg W2 Jd [2.3.1]

where a comma denotes partial differentiation and D, are the bending stiffness terms.

The Kinetic energy T for the plate is:

T= 1/2” mhdA [2.3.2]
A

where m is the distributed mass per unit area IV is the transverse velocity at x and y, and

A is the area of the plate.

The Ritz soiution procedure is used to determine the numerical values of the set of upr-
known coefficients, C's. To use the Ritz solution procedure, and to integrate these

equations the global x and y were transformed into a local system. This was achieved

by the followang transformation.

x=e+adi+(f—em+(c—a)m& (2.3.3]
y=g +Bn [23.4]
Structural Model 12
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The coeflicients a’, B, ¢, ¢, £, g’ are dimensions of the local coordinate system as shown

in Figure 1.

The Ritz solution procedure is based upon the second variational priniciple. The second
variational priniciple states that the total energy of the structure can be written in terms
of any kinematically admissible function. If the total energy, E(y), in terms of the
kinematically admissible function y, is stationary at y = y with E(y) = 0, then the func-
tion represents the real modes of the structure. If the function represents the real modes
of the structure then it can be used as a valid approximation to the exact solution. The

total encrgy of the structure can be written as:
E=U-T [2.3.5])

The extremum principle states that the energy is stationary with respect to C, i.e.

1 . . . .
;g =0 . This produces a system of n simultaneous equations. In matrix form then the
{

equations are expressed as:

(LK1 - @*[MIT(C) = (0} [2.3.6]

where [K] and (M! are the stiffness and mass matrices resulting from the partial differ-

entiation of the potential and kinetic energies, recpectively, with respect to the general-

ized coordinates.

Structural Model 13




3.0 __Aerodvnamic Model

3.] A erodvnamic Forces

This chapter presents the formulation of the aecrodynamic coefficient matrix. An

tncompressibie, 2-dimensional, unsteady strip theory was used to calculate the aero-

dynamic coetlicients. This method was first developed by Barriby, et. al, (20] and was

modiiied by Yates [16] to include the effects of finite span. Lift and moment

forces are
defined al

ong the midchord and acting upon sections perpendicular to this midchord line
(called the reference line hereafter).

-circulatory component) super-
posed by the disturbancc-vclodty distnibution (circulatory component) which will model

the efTect of the position and motion of the wing. It is modeled such that the condition

of tangential flow at the wing surface is met.

The position of each point of the segment taken perpendicular to tie reference line is:

Aerodynamic Vode|
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Z=h+x0 [31.1]

Where h is the deflection of the midchord, positive up, 8 is the rotation of a section
measured perpendicular to the midchord positive leadiiig edge down, and x’ is the per-

pendicular distance from the reference line, measured positive back.

The lift and moment forces are written in terms of a circulatary and non-circulatory
components. As taken from Yates’ modified strip analysis [3], the lift force (positive up)

per unit length of the wing, is given as:
L==rnpb’lh + V,8 + Voo tan A = baib + V,ttan A)],,

= [ClanPVabC3 ) 24) (3.1.2]

where subscript nc indicates the noncirculatory component and ¢ indicates the
circulatory component. The air density is p, b is the halfchord, ¥, is the air speed meas-
ured perpendicular to the mudchord. C,, is the section lift coefficient which is constant
along the span, A is the midchord sweep angle, and a is the off-set of the reference line
from the midchord line, assumed to be zero in this presentation. The local bending slope
of the reference axis is represented by o and the local rate of change of twist is repres-
ented by r. C(k,) is Theoderson’s circulation function. The reduced {requency, &, is a
raeasure of the amount of circulation in the flow field and is used in the circulation

function and 1s given as {10):

0.165 0.335

Clk,) =1 - 0455 - o1, (3.1.3]
k, k»
Aerodynamic Model 18




Similarly, the expression for the moment M, per unit length about the midchord (posi-

tive leading edge down) is :
M= —npb[(+ + O + V,t tan A) + mpbV,(h+ Vo tan A) + npb’alh + Vi tan A)

+ np V:bz(e — abrtan A)],.

2 Cl. n
[ ~2mpV,b ™[ 3~ (a = aen)C(K) == 10 [3.14]

where a_, is the distance to the aerodynamic center from the reference line, and Q, is the

downwash distribution defined by:

| C, |
Qu=h+ V0 + Viotan A+ b(—=+ g, - a)f = Vyrtand)  [3.15]

The airfoil geometry with typical dimensions is shown in Figure 4.

Aerodynamic Model 16
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The lift and moment forces can be reduced to the following expressions assuming the

;
4
E

wing is undergoing infinitesimal harmonic oscillations about its steady-state position
? [20].
# 32
L=~ rnpb w(B.4h + Bg0) [3.1.5]
M = = npb*w¥(Bsh + B,g0) [3.1.6]

The coefficients B, By, B,,, and B,, are defined as:

1 | '
1 Ben=p Acn~ k‘:’h Aptan A [3.1.7]
& Bg=A, +%bAc, tan A [3.1.8]
2
! Ba,,=-[',-,4,,,,~—k’fh—Aa,, tan A [3.1.9]
;
' Bap = Aga + 5 bge tan A [3.1.10]
!\A
? and;
2iC(k,)Cy
| AC,,=—1+———k—"2—n—’—i [3.1.11]
. n
)
2iClkn)Cly 2C(k)Cla
Ay =0+ ————"(] = 2g) + ———t—" [3.1.12]
cx k, Kyt k>2n
. 2C(ky)C,
ia n an
=% + PR - @,y — 4) [3.1.13]
Aerodynamic Maodel 13
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ZiC"(k,,)C,a',,

AGh:a_—_T,,T(_ac"+a) [3.1.14]

_ 2Ckp)Cly 2Chn)Crasubn 5

-a) - - 3.1.15
o ) kn (@ —a?) (3.1.15)
i 2 2
A, =——[— —-—(ac,,—a)Ac,,] [(3.1.16]
2k,

The bending deflection, h, and the torsional deflection,§ , are defined along the reference

line -- the midchord.

Special attention must be made when expressing the quantities which relate the aero-
dynamic and structura] models. The aerodynamic forces and displacements are derived
In terms of sections perpendicular to the reference line. The displacement functions (see
Chapter 2) and their derivatives define rotations parellel to the free stream flow. In order
to be consistent in the formulation, Yixs iy and Yiny Must be transformed to define

8.7, and ¢ in the Plane perpendicular to the reference line. These transformations are

as follows:

6%, 5) -Zc,w,,,(x F)eos A=y, (7,5 sin A)

[3.1.17]
=]
T(F, ) =) ClF ) sinA + Yi)l% . 7) cos A) [3.1.18]
i=]
Aerodynamic Model 19
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np
o(x .;) = ZCI(W.::(; ,;) cosAsin A

=1

+ 7i® 7N c0s’A = sin®A) =y, (%, 5) cos A sin A) [3.1.19]

Here the superscripts~ represent the fact that x, v are not any arbitrary values of x and

Y. butx, y are the coordinates of the reference line in x and y. Futhermore:
X=3tanA (3.1.20]
y

cos A
the point x, y from the origin along the reference line. For simplicity, 4, 6, 1, and ¢ can

Therefore A, 8, 1, and o are functions of j only, where y( =

) is the distance of

be written as:
np
HF) = ) G 79) [3.1.21]
=1
np
0 = ZC" 7i 5 [3.1.22]
=]
np
oG) =D Ci 7. 55) [3.1.23]
=]
np
D= C 757 [3.1.24]
1=]
Aerodynamic Model 20




The lift and moment forces can then be written in terms of the displacement functions
3,(7) and the unknown coeflicients, C. Based upon equations 3.1.5, 3.1.6, and

3.1.17-3.1.24, the lift and moment can be written as:

n np
L=-npp’e? (+ Y 7ml7) G = 7 tan A T30 Cod Ach
m=] n m=1
np np
+Ag Z Vm, z07) Cp +bA4,, tan A Z Tm, 5U) Cm [3.1.25]
m=| m=1
, np . np
M= mpbte’ ( Z Tmls, Cm = 5~ tan A Z T 77) Con} Aah
m=l n m=1
np np
+ A Z Vm, §(7) G +bA  tan A Z Y. 50) Cm (3.1.26]

Having obtained the lift and moment forces, in terms of the displacement function and
unknown coefTicients, attention must be focused on the principle of virtual work since
these forces are non-conservative. At this point forward, 7(y) will be represented as y for

ease in denvations.

Aerodynamic Model 21
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3.2 Virtual Work

The lift and moment forces are non-conservative forces, therefore the principle of virtual

work must te employed. The definition of virtual work gives:

! [ u
JW,,,:j Lshdy -Lf M30T = ) 0,6€, [3.2.1]
) 0 =1

where A, and 36 are the virtual displicements and Q, are the generalized forces. The

virtual displacements are defined as:

np
Sh= Y 75C, [3.2.2)
/=1
np
59= 9, 5 [3.2.3]
/:

The virtual work can be expressed 1n terms of generalized forces and displacements as:

np
oK ne = LQ: 0 Cx [324]
=]
This can be written as:
Aerodynamic Model 22

e ™ o



np

np
! .
aw,,c=_}:[j npb’w ZZ[—(/‘ 7)C, k‘ an A7, ; 7)C1Ag
j=1"0 1 n

i=

+ Ui 7 V)Cidey + b an A, 55 7)CA,, &5C,

pr Z [ (/[ y/ 1) C [an A(_‘ y YJ x) C] Iah
7% 7.5 Cilaa + BN AG, 55 7, 50C A, 1 dFoC [3:2:5)

The generalized forces are defined as:

np
Q=0 4, C [3.2.6]
i=]

The aerodynamic matrix then becomes:

l .
3 d v L 7= 3
= _.L""b 5 00 7) = 5~ @0 AG, 5 7)) e

+ 7“ I 7jACI + b tan A(_yi. E ?j)AC‘!} d_;

!
_J.o ,,pb"{[ (“ 7. 3) = tanA(‘, 7 7, 01Aan
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: The integral equations for the aerodynamic matrix are obtained by substituting the ex-
pressions for the aerodynamic coefficients, and the displacement functions y s into the
expression for the virtual work of the non-conservative forces. The integration is per-
formed numerically by a 15 point gaussian quadrature numerical integration scheme [23].
The roots of the Legendre Polynomual and the weight factors used in the numencal in-

tegration are given in Table 1.
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Table 1: Abscissas and Weights in Gaussian Quadrature, n=15

Abscissas Weights

0.000000000000000 0.202578241925561
+/-0.201194093997435 0.198431485327111
+/-0.394151347077563 0.186161000115562
+/-0.570972172608539 0.166269205816994
+/-0.724417731360170 0.139570677926154
+/-0.848206583410427 0.107159220467172
+ /-0.957273392400706 0.070366047488108
+/-0.987992518020485 0.030753241996117
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3.3 Flutter Analysis

The V-g method [24] was used in computing the flutter speeds. This mecthod introduces
a structural damping cocfficient g into the equations of motion. Neutral stability (flutter)
is attained for a given velocity, when the damping of the structure goes to zero. As-

suming harmonic motion the equations of moticn become:

[CKI(1 + ig) — w*[M]](C) = w?[A] (C} [3.3.1

In the absence of non-aerodynamic forces, the resulting generalized eigenvalue problem

can be written as:

(L4 - [B1){C}) = {0} (3.3.2]

B is a generalized complex matrix, 4 is the eigenvalue and {C) is the eigenvector. The

eigenvalue 4 15 defined as:

A= {3.3.3]

The generalized complex bar matrix bar [B] is defined as:
(8] = (K17 LM + 4] [3.3.4]
The flutter speed perpendicular to the mmudchord is defined as:

V, - —‘:—”—cos A [3.3.5]

n
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Where b is defined as the halfchord perpendicular to the midchord reference line. The

flutter frequency bar is w, and &, is the reduced frequency.
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4.0 Validation of Analvsis Program

4.1 Introduction

This chapter gives comparisons between results found in literature and the present code.
The validation process is broken down into four sections. To validate the stiffness ma-
trix, the static deflections are checked. The mass matrix is verified by comparing the
natural frequencies of vibration with isotropic as well as composite materials. Once suf-
ficient verification of the structural model is complete, the static acrodynamic loads are
checked for divergence of swept and unswept wings. The dynamic aerodynamic matrix
is verified by comparing the flutter frequencies and speeds with results found by Castel
and Kapania (21]) who developed a simple element for the aeroelastic analysis of lami-
nated wings. Their formulation allows for unsymmetric laminations, arbitrary geometry

including chord and thickness taper, and multiple sweep angles.

Validation of Analysis Program 23
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The comparisons made in this presentation are for a wing consisting of top and bottom
flat laminated skins rigidly connected as shown in Figure 3. For all isotropic compar-
isons, the matenal properties of the rectangular box beam were taken to be Aluminium:
E.=E , 10_N .

1= 2236.8948.{!0 - V12-0.30

2
m

The matenial properties of the material used in the laminated wing are:

En=69x10°LL £ as50x100 4202
m m

10 _N 3 kg
G2=15x10 7 Pmar=271x10"—
m m

It should be noted that the material properties were arbitrarily chosen.

4.2 Static Deflections

The static deflections are compared with Beer and Jchnston [22], and Castel and
Kapania [21]. For tip loading of a uniform cantiiever beam, Beer and Johnston [22] give

the tip deflection to be:

3

Pl -
=~ SET (positive up) (4.2.1]

Comparisons with the results ohtained using the EPFAC (Equivalent Plate Flutter

Analysis Code) are given in Table 2, for difTerent aspect ratios, AR.
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Next, the tip deflection under the same loading condition was tested against results of
Castel and Kapania [22] for the wing in Figure 3. In this formulation, Castel and
Kapaaia used four finite elements to model the structure. Each beam element has
twenty-four degrees of freedom, twelve at each end. Results for zero sweep and variation
in fiber angle are given in Figure 5. Excellent agreement between the finite element code

and EPFAC exsists for the entire range of values of the fiber angle.

Figure 6 gives a clear comparison between the two different models. EPFAC is termed
a skewed wing while the model of reference 21 is a rotated wing. The differences in de-
flections obtained using the different modeling 0. the wing structure can be accounted
for as follows. The rotated wing's boundary conditions are such that the analysis pro-
cedure assumes an eflective root and tip perpendicular to the reference line, regardless
of sweep angle. As a result, the static deflections are independent of the sweep. The
skewed wing assumes the root and tip parallel to the flow. As the wing is swept forward
or backward, the torsional and bending stiffnesses become coupled. Static deflection

comparisons for different sweep angles of the composite material are given in Figure 7.

4.3 Free Vibration Analysis

For the wing under ccnsideration, the natural frequencies obtained from the present
code EPFAC was compared with those obtained using the expressions for a uniform
Bernoulli-Euler Cantilever Beam [25]. The comparisons of these values are shown in

Table 3. The results show excellent agreement for different aspect ratios.
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~ EPFAC was compared with Ref, (21], for an unswept wing having different ply angles.
_ The results are plotted in Figure 8. The natural frequencies of forward and aft swept
4

” wings were also tested. The results are shown in Figure 9. The differences between the
‘ two sets of results at larger sweep angles are due to the differences in modeling of the
P boundary conditions, in the two studies as discussed previously in section 4.2.
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Table 2 : Comparisons of Tip Deflections (meters) for Diiferent Aspect Ratios

; AR EPFAC Eqn. 4.2.1 Yodiff
f 5 - 0.04748 -0.04646 214
; 10 -6.18995 -0.18587 2.15
’ 20 -0.75968 -0.74342 2.14
i 30 -1.71032 -1.67408 2.12
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Table 3: Comparison of Natural Frequencies (rad/sec) for Different Aspect Ratios

AR Mode EPFAC Ref.24
5 1 9.015 9.040
2 56.349 56.674
3 157.832 158.732
10 | 4.490 4.522
2 28.085 28.334
3 78.627 79.356
20 1 2.242 2.261
2 14.027 14.169

3 39.250 39.682 |

!

{

1

]
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4.4 Divergence and Flutter

Having gained confidence in the structural model, the results for aeroelastic response of
swept and unswept wings were compared with the results from two different codes: (1) a
code written by Barthelemy and Bergen [17), and (ii) a code written by Castel and
Kapania [21]. Barthelemy and Bergen used Weissinger's L-Method to obtain the static

aerodynamic loading matrix.

In Weissinger's L-met. od, the flow around the wing is modeled by a lifting line of
vortices bound at the wing quarter-chord line. A no-pentration boundary condition is
specified at na control stations along the wine The placement of the control points de-
termines the spanwise distribution of © . modification to the position of the down-
wash distribution was employed to account for the slope of the C, vs 2 curve less than

2.

The wing dimensions used for companson with the present method are:

$=200m* AR=100 tp=10

where 1p is the taper ratio of the half wing. The results are shown in Figure 10. An

excellent agreement is observed between the two sets of results.

Castel and Kapania [21] used Yates’ modified strip method [3] to obtain both the static
and dynamic aerodynamic loadings for swept and unswept composite wings. For dif-
ferent values of sweep the fiber orientation was varied and the results for the divergence

and flutter speeds were obtained with EPFAC. Figures 11-15, show the comparison
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between the results obtained using the EPFAC code and that of Castel and Kapania for
divergence and flutter speeds for diiTerent va'ues of sweep and fiber oricntation. The
differences at large sweep angles are due to the different models used in the two studies.
As discussed previously in the section on deflection in this chapter, the model used in

Reference [21] is a rotated model, compared to a skewed model used in EPFAC

S W

-
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5.0 Sensitivity Analvsis

5.1 Introduction

This chapter presents the calculation for the sensitivity of the flutter speed, flutter fre-
quency, and reduced frequency to geometric shape parameters namely: (i) aspect ratio,
(i1) surface area, (iii) taper ratio, and (iv) sweep angle. The sensitivity calculaticns require
the sensitivity of the aerodynamic, mass and stiffness matrices with respect to various
shape parameters. A key objective of this study is to check the viability of calculating
the desired derivatives using an analytical approach. It was decided to analytically ob-
tain the sensitivities of the aerodynamic matrix. The analytical derivatives eliminate the
uncertainty in the choice of step size which if too large can can lead to truncation errors

and if too small can lead to ill-conditioning.

The derivation of the analytic derivative of the aerodynamic matrix, is given in this
chapter. To validate the expressions for the eigenvalue derivatives, these derivatives are

calculated using three different methods. The first method is purely a numerical ap-
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proach that uses a finite difference approximation to find the eigenvalue derivatives. The
second method is a semi-analytic approach, because the derivatives of the aerodynamic
matrix are found using finite difference approximations, and then using the expression
for the derivative of the eigenvalue as given by Murthy and Haftka [19]. The third “an-
alytic” method uses an analytically derived derivative of the aerodynamic matrix, along

with the eigenvalue derivative expression given by Murthy and Haftka [9].

5.2 Eigenvalue Derivatives and Solution Procedures

In the first method of calculating the derivatives, the flutter problem is solved twice and
the derivatives of the eigenvalues are approximated using a forward finite difference

scheme.

The second and third methods use the expression for the eigenvalue derivative as given
by Murthy and Haftka [19]. The expression is derived using the main and the adjoint

problem. The main eigenvalue problem is:

({714 - [Bll{e,} = {0} (5.2.1]

where ¢, is the right hand eigenvector, and [B] is defined in equation 3.3.4. Similiarly the

adjoint problem is:

{e'[LNA - [B)] = {0} [5.2.2]
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where ¢, is the left hand eigenvector. The eigenvalues in both cases are the same. Taking

the derivative of equation 5.2.1 with respect to a shape parameter p, yields:

ai_ _ ¢[8] e _
(N5, 5 Hed + (LA - [B]] Zp 1 =0 [5.2.3]

Muluplying the above equation by left eigenvector gives:

t } a[B ) de,
ey tngE- S e s @ - =0 (524
Equation 5.2.2 reduces this to: )
di_ (8] '
(ez}'[[fla—ps— 2, 1{e} =0 (5.2.5] i

For the i eigenvalue, the eigenvalue derivative is expressed as:

ive 9081 !

o legd {e/} {
g‘ = (a{;; = [5.2.6] !
Ps {e/} {e,} !

Recalling equation 3.3.3, the cigenvalue derivative in terms of flutter frequency, damp-

cpmns A o -~

ing, and there derivatives is written as:

o
‘w [ .g w? =20 fcu ¢] X
al ap; chs 0P . i
=-—— i [5.2.7] }
aps w w* ";
3 Sensitivity Analysis 49 ¢




B kiaht achhimalotb )

S v

E . T A

L a3 L i o

To obtain the derivative of the generalized complex matrix [B], the derivatives of the
acrodynamic matrix {A]; of the inverse of the stiffness matrix [K]-!, and of the mass

matrix (M] are needed.

8] _ K]

[y .
e (D + e L 4 L

¢ps dp,

] [5.2.8)]

5

The derivatives of the mass matrix, and the inverse of the stiffness matrix are obtained
using the forward finite difference method. A study was first conducted to obtain an
appropriate step size for the finite difference calculations. The results of this study are
shown in Table 4. These step sizes indicate that the calculated derivatives are stable as

indicated in Table 4.

The denvatives of the aerodynamic matrix {A] with respect to a geometric shape pa-
rameter are obtained using two different methods: (i) finite difference method; and (ii)
analytic method. The calculation of the sensitivity of the aerodynamic matrix [A] is made
difficult by the fact that this matrix depends upon shape parameters p, and also on the
reduced frequency k,. The reduced frequency is not really an independent variable, as its
value for a new value of p{ = p?@ + Ap,) should be such that the imaginary part of the

eigenvalue corresponding to the perturbed configuration should be zero.

In the finite difference method, the sensitivity of the aerodynamic matrix [A] is obtained

as follows:

alA] - [A(p, + Apg, ky + Ak,)] = [A(py k)]

5.29
dps Ap; C ]
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To obtain the value of Ak, an iterative procedure, as described in Figure 16, is used.
As a first step, 8k, is put equal to zero, and the sensitivity of the eigenvalue is obtained.

Obviously, the imaginary part of the new eigenvalue thus obtained will not be zero. This

fact is used to obtain the value of Ak, as explained in the following.

The change in the damping coefficient g, a function of both the shape parameters and

reduced frequency, can be written as:

og og
dg = % dp, + 5 dk,, [5.2.10]
At flutter speed:
g=0 , dg=0
Therefore
og
dk d
1 [5.211]
dp; og

-

Note that —é:— was already obtained during the calculations of the flutter speed. The

n

values of reduczd frequency are varied in the intial problem to compute the value at the

é
point the damping coeflicient goes to zero. Therefore, ag— is easily computed by a for-

d
ward finite difference scheme. The value of-(-a-j— is obtained from the imaginary part of

5

the sensitivity of the eigenvalue obtained in the first step. This is computed directly from

the eigenvalue derivative. Recalling equation 5.2.7:
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2 dw
og di 2 cp;
—_— = =L — 9
3., = imag( 2p, w”+ [5.2.12]

where w 1s obtained from the orginal flutter problem and,;

3 reaz’(aip}'-) W’
w __ s 5
2, 3 [5.2.13]

-

g . L . . .
lfa—g is not within a tolerance of 10-%, the aerodynamic matrix [A] is re-alculated at a

P,

new value of the reduced frequency while also keeping the same perturbation in the

n

shape paramete:. Once is known, an approximation to the value of k,, correspond-

dp
ing to flutter speed for a new value of p,, is obtained using a Taylor’s series expansion:

]

dk,

new _ , old
k k p

new _ k%4 1 Ap r5.2.14]

5
This process is repeated until the tolerance is met.

In the "analytical” method, the sensitivity of the generalized comp.ex matrix [B] is ob-
tained in a simuliar fashion except the sensitivity of the aerodynamic matrix [A] is com-

puted analytically. This is expressed as follows:

d4) 4] dA) dk

= 5.2.15
dp, op; ok, dp; [ ]

a4 arA dk,
Both E ] and (4] are derived in section 5.4. The value of — is computed from
op, Ok, dp,

the eigenvalue denivative, as explained above. In the first itcration,-ﬁl 1s assumed to

1

be zero. The acrodynamic matrix derivative is computed and combined with the denva-
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. . . , (B ,
tives of the mass [M), inverse stiffness matrices [K]! to form ’g ]. The cigenvalue
P

H

dk
derivative 1s then computed. The value of—d;"- 1s calculated as described above. Figure

17 shows a detailed flow chart of the anaiytic method.

The derivative of the flutter speed is:

Jw cbh cky,
e T, [5.2.16)
ép; k* -

The flutter speed at the new configuration is then computed using a truncated taylor

series. As before:

av,
vpev= vt —Lap, (5.2.17]
p;

To calculate the analytic derivative of the aerodynamic matrix, the geometric parameters

must first be defined.

5.3 Geometric Parameters

The Acerodynamic matrix is composed of geometric parameters which are a function of
surface area, aspect ratio, taper ratio and sweep angle. These parameters are the span,
root chord, tip chord, halfchord, the global x and y coordinates, the displacement func-
tions, and their denivatives with respect to global x and y coordinates. These are ex-

pressed as:
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B=J4RS [5.3.1]

,\?
* C, = S [5.3.2]
. (1+ ip)y AR S
e
. 2S
‘ C, = - [5.3.3]
’ (I +1p)JAR S

)

+1
; crd(i) = c,+(c,—c,)3’m2‘) i=1,.15 [5.3.4]
C,

h x(1)=7+}(1) anA i=1,.,15 [5.3.5]
| -

E y(1)=L(‘)2~ i=1,.15 [5.3.6]
:

] crd(i) )

: b(i =—2~cosA (=115 (5.3.7]

Where b is the halfchord measured perpendicular to the reference line ,» AR 1s the aspect

ratio, 3 is the surface area, C, is the root chord, C, is the tip chord, crd(i) is the chord

< T T T T T TR R TR

length at station i , and Ip 1s the taper ratio.

5.4  Analytic Derivatives

For general purposes, p, will represent the shape parameters, where s=] is the surface

area, s=2 is the aspect ratio, s=3 is the taper ratio, and s=d is the sweep angle. The
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Aerodynamuc matrix, given in equation 3.2.7, must be diTerentiated with respect to the
shape parameters and the reduced frequency. In order to avoid the use of Lebnitz’s Rule,
and facilitating numerical integration using Gauss integration, the intergrals must be

changed over to local coordinates. Equation 3.2.7 is written as:

1 .
32 1 - - s _ 3
Aj=-— j_ln/)b o’ [[ e (3 %) - k—'n tan A7, ; 7)1

B

+Vuz h A O ANAG, 5 ¥)A, ]—'—2 o A

1 .
p R R - =
--J npb‘a.) (C > (7i 7, ) — _kl an A, 5 ¥, ) 1Azn [5.4.1]
-1 n

B

7.5 Y idaa T 0RNAGY, ;/—‘)A‘"] 2¢cos.\

where dy 15 replaced by -i—fg-/—\-dq.

The derivative of the aerodynamic matrix with respect to a general shape parameter,

representing B’ = , 18 ‘

Ccos A

d~1 1 b

C - + a_
dP, — rpw [ _ [( a 7, apx

~<I
>
N
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2 2b - 3 Ci ). 973
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The derivatives of the displacement function with respect to a general shape parameter
g, are given as follows:

20 8 O

=

+ = 5.4.3
%, " x op, Ty [>4.3]
The global coordinates x and y are given in terms of the local coordinates 2nd the ge-
ometnc shape parameters in equations 5.3.5 and 5.3.6. The derivatives of x and vy with

respect to various geometric shape parameters are as follows:

& S+ ) C5.4.41
¢4R 4 JARS e
3y_='AR(r;+l) [5.4.5]
dS  I(JARS) -
¢y
—_—= (), .
31p 0.0 [5.4.6]
éy
<= =00 (5.4.7
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_Qx_ tan A

1 dy
= +
8S 21 +1p)JARS  G4R

dx_ _ SJYARS
(1 +1p))?

dx NARS(n+1)
oA 2 cos®A

The derivatives of the halfchord with respect to the shape parameters are:

66 (1+(tp=1)n+p)cos A

S 41 +1pJARS

96 _ £2(1+(rp—l)r/+:p)cos/\
JAR ~ 3
4(1 + p)(S AR)Z

3b - Sn cosA _
CtP (1 +1p)2JARS

b S+ (tp=Dn+1p)sinA
dA 2(1 + 1p)/S AR

[5.4.8]

[5.4.9]

[5.4.10]

[5.4.11]

[5.4.12]

[5.4.13]

[5.4.14]

[5.4.15]

The aerodynamic coeflicients, A, An, Ay Aapy A and A,,, are functions of the reduced

ar ‘Tce

frequency. The reduced frequency changes as the shape parameters change therefore

these terms are functions of the shape parameters and must be included in the formu-

lation. They are defined as:
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n dl( C n) C[J l
7501 = 5 A 5.4.22
n

The derivative of Theodorsen’s circulation function, as given in ecuation (3.1.3), is:

0075075: 1005i
2 2
dctty) kn - kn [5.4.23]
dk, .0455i -2 30 42 o
S e R U R
kn kn

The "analytic” derivative of the eigenvalue with respect to various parameters, namely
the surface area S, the aspect ratio AR, the taper ratio 7p and sweep were compared with
those obtained using the two previously described methods, namely: (i) the purely finite
difference method and (1) a semi-analytic approach in which the desired derivatives were
obtained using a forward finite difference scheme. The results are shown in Table 5. An
excellent agreement exists between the various sets of results. However, the values of the
derivative of the eigenvalue, with respect to sweep, see fourth row of Table 4, obtained
using the three methods appear to be different from each other. For example, the "ana-
lytically obtained * derivative ( case (iii)) is about 6.95 percent more than that cbtained
using a purely finite difference approach (case (i)). Similiarly, the value of the same de-
rivative obtained using a semi-analytic approach (case (ii)), is about 9.36 percent less
than that obtained using the analytic approach. The reasons for this descrepencies are
not entirely clear at this stage. However, Figure 28 shows that the analytic method gives

the best results.

Figures 18 through 29 show the flutter speed, frequency, and reduced frequency analyt-

ically based values versus the values which where reanalyzed at different configurations.

Sensitivity Analysis 60

S

[



These are called reanalysis values because the v-g method was used to solve for the

flutter speed at the perturbed value, These show excellent agreement over a range which

can be uscful to the designer in the intial design phase.

However, close attention should be paid to any mode shifting. For instance, in smaller

aspect ratio configurations the flutter frequency predominant mode changes from the

third mode to the second mode. This evident in Figure 21, where the flutter frequency

drops for the lower values of the aspect ratio.
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Table 4: Comparison of Finite Difference Step Sizes .

AS
1.0 18.934 2 50.785 @ 60.748 2 09612b 0.2149 0.0808b
.10 18.945 49.120 57.449 0.9193 0.1987 0.0730
01C 18950 48.930 57.100 0.9147 0.1970 0.0723
.001 19.00 48.200 56.100 0.9000 0.1935 0.0709
AAR ‘
1.0 0.0 86.850 119.85 1.7345 0.4812 0.1986
10 0.0 78.558 109.84 1.6370 0.4153 0.1613
01¢ 00 78.310 108.83 1.6268 0.4091 0.1579
001 0.0 78.70 109.30 1.6350 0.4105 0.1583
Aip
.10 0.0 123.63 122.64 2.1397 0.3583 0.1131
01 0.0 1i8.03 117.10 2.0429 0.3421 0.1080
001° 0.0 117.50 116.60 2.034 0.3906 0.1075
0001 00 116.0 115.00 2.010 0.3370 0.1070 '
AA
1.0 61.993 53.302 108.49 15123 12566 .04798
10, 61811 51.543 108.17 15079 2479 04785 '
.01 61.765 51.394 108.12 15075 2471 04784 ;
.001 61.307 51.566 107.72 .15069 .2469 .04755

a) These columns represent the finite difference derivatives of the stiffness matrix.

b) These columns represent the finite difference derivatives of the mass matrix.

c) Step size used for finite duference calculations

S LA
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Table 5: Comparison of Eigenvalue Derivatives w.r.t Four Parameters

case (i) casc (ii) case (iii)
Finite Difference Semi-Analytic Analytic
S 24151 E-5 24593 E-5 2.4571 E-5
AR 7.8769 E-6 8.1694 E-6 8.1562 E-6
TP 26719 E-4 2.6571 E-4 2.6330 E-4
SWEEP 2.8831 E-§ 2.4199 E-5 2.6761 E-5
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6.0 Conclusions and Suggestions for Future Work

A method for analyzing the dynamic aeroelastic Lehavior of a laminated wing has been
developed. The aerodynamic formulation was taken from Yates’ modified finite strip
method. This was combined with Giles’ equilavent plate model which is capable of ana-
lyzing crarked wing box structures. Three different approaches were used to obtain the
sensitivity of the flutter speed, frequency, and reduced {requency. The first was a purley
numerical approach using finite difference method. The second used the analytic ex-
pressions for the derivative of the eigenvalue as originally derived by Lancaster {19}, and
a finite dufTerence method to the calculate the derivatives of the 2srodynamic, mass and
stiffness matrices. The third method 2iso used Lancaster's [19] expression for the
eigenvalue derivative but the derivative of the aerodynamic matrix is computed analyt-

ically.

[t vas shown that the eigenvalue derivatives for all three cases are in good agreement
with each other. Also the results for flutter speed and reduced frequency obtained using
sensitivity based analysis, for a significant range of parameters, are found to be in good

agreement with those obtained using 2 complete reanalysis.
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There is ample room for additional work in the area of Aerodynamuc sensitivity analysis.
This work can be extended to include the analytical derivatives of the mass and stifTness
matrices. This will eleminate any uncertainties in chioosing a finite difference step size

and be of great use to the present optimization codes.

An improved aerodynamic code could be added to include the effect of chordwise
bending of the box stru:ture. This can ve achieved by using the aerodynamic coefficients

developed by Spielberg [26] to modify the present analysis.

The variation of the curvature of the flutter speed, flutter frequency , and reduced fre-
quency could be predicted more acurately by a second order derivative. For a general
complex matrix, efficient calculations of these derivatives are present by Murthy and

Haftka [19].

The aerodynamic sensitivity calculations of a wing with mass stores is needed in the in-
dustry. The changing mass configurations of a wing with missiles and bombs is a typical

example for the need of such an anauysis capability.

This work can be extended to include the sensitivities of the flutter speed, flutter fre-
quency, and reduced frequency to a simultaneous change in several shape parameters.
For example, the sensitivity of flutter speed with the changes in sweep and aspect ratio
would be useful. The structural code used in this analysis is extremely versatile and can

be extended with the present aerodynamic iormulation to analyze cranked wing boxes.

Conclusions and Suggestions for Future Work 79

e ¥




7.0 References

I. Bisplinghoff, R. L., Ashley, H., and Halfman, R. L. Aeroelasticity, Addison-
Wesley Publishing Company, Inc., Reading, Mass. 1955.

2. Loring, S. J., “General Approach to the Flutter Problem”, S.4.E. Transactions )
, Vol. 49, Aug.,1941, pp.345-336. 2

3. Yates E. C.,"Calculation of Flutter Characteristics for Finite-Span Swept or
Unswept Wings at Subsonic and Svpersonic Speeds by a Modified Strip Anal-
ysis”, NACA RM L5710, March 18 1958 (Declassified Feb. 6, 1962) :

4. Landsberger, B. J., and Dugundji, J.,“Experimental Aeroelastic Behavior of
Unswept and Forward-Swept Cantilsver Graphite/Epoxy Wings”, Journa!l of .
Aircraft, Vol.22, No.8, August 1985.

S. Spielberg, I.N., “The Two-Dimensional Incompressible Aerodynamic CoefTi-
cieats for Oscillatory Changes in Airfoil Camber”, Journal of the Aeronautical
Sciences, Vol.20, June 1953, pp.389-396.

6. Strganac, T. W., and Mook D. T.,“A New Method to Predict Unsteady
Acroelastic Behavior”, AIAA 28th Structures, Structural Dynamics and Materi-
als Conference April 6-8 1987,

7. Waldman, W., “A Fortran Prcgram for the Determination of Unsteady
Airforces on General Combinations of Interfering Lifting Surfaces Oscillating
in Subsonic Flow”, Structures Report 412 D.O.D. of Australia., January 198S.

: 8. Hawk, D. J., ana Bristow, D. R., 1984: “Development of MCAERO Wing De-
sign Panel Method With Interactive Graphics Module”, NASA CR-3775.
9. Brayton, R. K., and Spence, R.Sensitivity and Optimization ,Clsevier, New
York, 1980.

References 80




10.

11.

12.

13.

15.

l6.

17.

18.

19.

References

Frank, P. M.,Introduction 1o Sensitivity Theory, Academic Press, Orlando, Fl.,
1978.

Radanovic, L. (ed.),"Sensitivity Methods in Control Theory”, Pergamon Press,
Oxford, England, 1966.

Tomovic, R.,"Sensitivity Analysis of Dynamic Ststems”, Mcgraw-Hill Book
Co., New York, 1963.

Adelman, H. M., and Haftka, R. T., “Sensitivty Analvsis of Discrete Structural
Systems”, AIAA Journal , Vol. 24, No.5, May 1986, pp.§23-831.

Rudisill, €. S., and Bhatia K. G.,*Optimization of Complex Structures to Sat-
isfy Flutter Requirements”,  A[AA Journal Vol9 No.8, August 1971,
pp.1486-1491.

Pedersen, P and Seyranian, A. P.,“Sensitivity Analvsis for Problems of Dy-
namuc Stability”, International Journal of Solids and Structures Vol 19, No.d,
1983, pp.315-335.

Yates, E. C., "Aerodynamuc Sensitivity from Subsonic, Sonic, and Supersonic
Unsteady, Nonplanar Lifting Surface Theory” NASA TM-100502, 1987.

Barthelemy, J-F. M., and Bergen, F. D., “Shape Sensitivity Analysis of Wing
Static Aeroelastic Characteristics”, NASA TP-2508, May 19$S.

Giies, G. L.,"Equivalent Plate Analysis of Aircraft Wing Box Structures with
Seneral Planform Geometry”, NASA TM 87697, March 1986

Murthy D. V., and Haftka, R. T.,*Derivatives of Eigenvalues and Eigenvectors
of a General Complex Matrix”, Department of Aerospuce and Ocean Engineer-
ing, VPI&SU , June 1986

Barmby, J. G.. Cunningham, H. J., and Garrick, I. F.,"Studv of Effects of
Sweep on the Flutter of Cantilever Wings”, NAC.4 TN 2121, June 1950.

Castel, F. , and Kapania, R., “A Beam Element for the Aeroelastic Analysis of
Undamaged and Damaged Laminated Structures”, CCMS Report, July 1988.

Beer, F. P., and Johnston, R. E., Mechanics of Moerials, tst ed., Vol. 1,
McGraw-Hill, New York, 1531, p.598.

Carnahan, B., Luther, H. A, and Wilkes, J. O., Applied Numerical Methods,
Ist ed., Vol. 1, Wiizy, New York, 1969, p.103.

Fung, Y. C.,An Introduction to the Theory o Aeroveiasticity , Dave, ®ublications,
Inc., New York, 1945 pp.215-2d1.

Craig, R. R.,Structural Dynamics John Wiley and Sons, New York, 1981, p.215.

CLGINAL PAGE 1S &l
OF POOR QUALITY

e



26.

27.

28.

29.

30.

31

32.

33.

34.

33,

36.

References

Deyoung, J., and Harper, C. W.,* Theoretical Symmetric Span Loading Load- o
ing at Subsonic Speeds for Wings Having Aribitrary Plan Form”, NACA Re-
port No. 921, 19438.

Dovwell, E. H., et al., A Modern Course in Aeroelasticity, Sijthoff & NoordhofT,
Alphen aan den Rijn, The Netherlands, 1978, pp.72-100.

Goland, M.,"The Flutter of a Uniform Cantilever Wing”, Journal of Applied
Mechanics, December 1945 pp.197-208.

Haftka, R. T., and Yates, E. C.,“Repetitive Flutter Calculations in Structural
Design”, Journal of Aircraft , Vol.15, No.7, July 1976, pp.454-461.

Lottaty, I.,“Flutter and Divergence Aeroelastic Characteristics for Composite
Forward Swept Cantileverd Wing”, AIAA paper, June 1985.

Meric, R. A.,“Shape Sensitivity Analysis of Dynamic Structures” , A/AA
Journal, Vol.26, No.2, February 1988 pp.206-212.

Rao, S. S.'“Rates of Change of Flutter Mach Number and Flutter .
rrequency”, AidA Journal, Vol. 10, No.11, November 1972, Ep.1526-1528.
Rudisill, C. S., and Bhatia K. G.,"Second Derivatives of the Flutter Velocity '
and the Opumuzation of Aircraft Structures”, A/A4 Journal,Vol.10, No.12, i
December 1972, pp.1569-1572. '
Seyranian, A. P.“Sensitivity Analysis and Optimization of Aeroelastic
Stability”, International Journal of Solids and Structures, Vol 18, No.9, pp ;
791-807, 1982. ‘
Sninivasan, R. S., and Babu, B. J. C.,* Free Vibration And Flutter of Laminated
Quadrilateral Plates”, Computers and Structures , Vol.27, Nu.2, November 1987 '
pp.303-312. ‘
Theodorsen, T.,"General Theory of Aeiodynamic Instability and the Mech- !
anism of Flutter” NACA Report No0.496, May 1934, ¢
1
§
'
{
ORaNel payr Y
oF o Gy N
!
}
Y

.
’
»

\

82




Report Documentation Page

2. Government Accession No.

NASA CR-181725

. Recipient’s Catalog No.

4. Tive and Subtitle 5. Report Date
Shape Sensitivity Analysis of Flutter Response October 1988
of a Laminated Wing 6. Pertcyming Organization Code

7. Authoris)

Fred D. Bergen and Rakesh K. Kapania

. Performing Organization Report No.

. Work Umit No.

506-43-41-01

9. Performing Organization Name and Address

11. Contract or Grant No.

Virginia Polytechnic Institute & Stat Universit
g y € tniversity NAS1-18471 - Task 5

Department of Aerospace and Ocean Engineering

Blacksburg, VA 24061 13

12. Sponsoring Agency *ame and Address

. Type of Report and Penod Cavered

Contractor Report
National Aeronautics and Space Administration

14. Sponsoring A+,. “cy Code
. | g ™
Langley Research Center ’

Hampton, VA 23665-5225

15. Supplementary Notes

Langley Technical Monitor: J-F M. Barthelemy

16. Abstract

P method is presented for calculating the shape sensitivity of a wing aeroelastic
response with respect to changes in geometric shape. Yates' modified strip
method is used in conjunction with Giles' equivalent plate analysis to predict
the flutter speed, frequency, and reduced frequency of the wing. Three methods
are used to calculate the sensitivity of the eigenvalue. The first method is
purely a finite difference calculation of the rigenvalue derivative directly

from the solution of the flutter problen corresponding to the two different values
of the shape parameters. The second method uses an analytic expression for the
eitenvalue sensitivities of a general complex matrix, where the derivatives of
the acrodynamic, mass, and stiffness matrices are computed using a finite
difference approximation. The third method also uses an analytic expression for
the eigenvalue sensitivities, but the aerodynamic matrix is computed analytically
A1l three methods are tound to be in good agreement with each other. The
sensitivities of the eigenvalues were used to pradict flutter speed, frequency,
and reduced frequency. These approximations were found to te in gocd agreement
with those obtained using a complete reanalysis. However, it is recommended that

higher order terms be used in the calculations in order to assure greater accuracy
17. Key Words (Suggested by Authorls) 18, e byton Statemaent

sensitivity analysis
Flutter
Composites

Unclassified - Unlimited
Subject Category 05,34,39

-
19. Secunty Classif. (ot his repors)

[ Unclassified

| 2C. Securnty Claz ut (of s page 21 No. of pages 2. Prce

Unclassified l 94 | A05

MASA FORM 162¢ OCY 8

— .

L WA e i ———— Y - o

:,,
|




